

Allocations & Distributions
Allocations & Distributions with finaquant® protos

Included examples show how allocations and distributions can be calculated with finaquant protos,

the non-commercal calculation engine library (.NET) based on table functions.

Written by Tunc Ali Kütükcüoglu ©Finaquant Analytics Ltd, 22. November 2012

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 1

Contents
Getting and using the source code (C#) .. 2

Allocations and Distributions .. 3

Distribution in four steps: Distribution of costs .. 4

Step 1: Combine cost and key tables... 5

Step 2: Add key figure “key_sum" into the combined table ... 6

Step 3: Insert new key figure “costs_distributed” into combined table .. 6

Step 4: Calculate distributed costs .. 7

Simple Distribution Function ... 8

Distributing bonus amounts to teams and years .. 9

Allocating profits to profit centers .. 11

Conclusions .. 11

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 2

Getting and using the source code (C#)
All the source code in C# required for running the examples below including the simple distribution

function can be downloaded at the product page of finaquant® protos.

The downloadable zip package contains:

 This pdf document as User Manual

 Code file Applications.cs

You will find three functions (methods in C# programming jargon) in the code file Applications.cs:

1. Allocation_Distribution_demo()

2. SimpleDistribution()

3. DistributeSourceAmountToTarget()

Copy all these three functions and paste them into the code file Applications.cs in your Visual Studio

project FinaquantProtosStarter, into the area defined by the class Application without deleting any

existing method or code already existing in this class.

You can now run the demonstration function by first adding the statement

Applications.Allocation_Distribution_demo() into the code file Program.cs then pressing the

key F5.

For any problems and questions please refer to product’s forum at:

http://finaquant.com/forum/finaquant-protos

http://finaquant.com/products/finaquantprotos
http://finaquant.com/forum/finaquant-protos

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 3

Allocations and Distributions
Though most commonly used for financial planning and accounting, allocations and distributions can

be needed in any calculation where proportionate (pro-rata) distribution of some amounts is

required.

A classical distribution example is distributing costs obtained at company level further to

departments and teams in proportion to given key amounts or ratios. Another example could be

distributing bonus amounts calculated at department level further to teams and individuals.

Distribution is done from a set of entities to other entities. Let’s take distribution of costs from the

entity department to entity team as an example. The initial table costs(department) is

transformed into a bigger table costs(department, team) by the distribution with the

additional field team.

Allocation in turn means distributing some amounts within the same entity group. A typical example

is distributing costs from some central cost centers to other de-central cost centers. Note that no

additional fields are added into the initial table costs(cost_center) by the allocation; only

new field values.

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 4

In the examples below, you will see how a distribution can be accomplished in four simple steps

using the available table functions in finaquant® protos. These four steps will be than packed into a

general distribution function with tables as input and output parameters as shown below:

The simple distribution function (which is a table function) has two input tables, and an output table,

plus some additional detail parameters like the names of new key figures to be added:

OutputTable = SimpleDistribution(SourceTable, KeyTable,

… detail parameters)

Note that an allocation can be formulated as a special case of distribution, as you will see in the

following examples.

Distribution in four steps: Distribution of costs
In this example, costs are distributed from department to teams and persons. Following cost and key

tables are given as inputs:

SourceTable from which the amounts are distributed

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 5

KeyTable with distribution keys (or ratios)

The strategy for calculating the distributed costs is the following:

 Ensure that we have every attribute and key figure we need to calculate the distributed costs

by combining the tables and adding the necessary key figures into the combined table.

 Calculate the distributed costs by row-by-row processing of combined table.

This is a simple and effective strategy which can be used for many other kinds of table calculations.

First, ensure that you have all the required parameters as fields of the of table, than calculate the

desired fields by row-by-row processing of the table.

Step 1: Combine cost and key tables
// combine tables

NumVector MatchedRowsTbl1, MatchedRowsTbl2;

var CombinedTbl1 = MatrixTable.CombineTables(CostKeyTable, CostTable,

 null, null, null, out MatchedRowsTbl1, out MatchedRowsTbl2);

// filter out unmatched rows

CombinedTbl1 = MatrixTable.PartitionRow(CombinedTbl1, MatchedRowsTbl1);

// view table

MatrixTable.View_MatrixTable(CombinedTbl1,

"Step 1: Combined cost and key tables");

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 6

We have now two key figures costs and cost_key in the combined table as shown above. The

aggregation key figure key_sum (sum of cost_key w.r.t. department, the common attribute of cost

and key tables) is still missing. We need key_sum to calculate distributed costs:

costs_distributed = costs x (costs_key / key_sum)

Step 2: Add key figure “key_sum" into the combined table
bool IfSuccess;

string Warnings;

// add aggregation key figure into table

CombinedTbl1 = MatrixTable.AggregateSelectedKeyFigure_B(CombinedTbl1,

 TextVector.CreateVectorWithElements("department"),

 "costs_key", "key_sum", AggregateOption.nSum,

out IfSuccess, out Warnings);

// view table

MatrixTable.View_MatrixTable(CombinedTbl1,

"Step 2: Key figure key_sum is added to combined table");

Step 3: Insert new key figure “costs_distributed” into combined table

This key figure must be inserted into the table so that it can be calculated by row-by-row processing

of table with the formula stated above.

// insert key figure "costs_distributed" into combined table

CombinedTbl1 = MatrixTable.InsertNewColumn(CombinedTbl1,

"costs_distributed", FillAllValue: 0.0);

// view table

MatrixTable.View_MatrixTable(CombinedTbl1,

"Step 3: New key figure costs_distributed is inserted into to

combined table");

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 7

The initial value of the new key figure costs_distributed is zero for all rows of the combined table. The

resultant values for this key figure will be calculated with the next and last step.

Step 4: Calculate distributed costs
// row-by-row processing with user-defined function

CombinedTbl1 = MatrixTable.TransformRowsDic(CombinedTbl1,

DistributeSourceAmountToTarget,

 "costs_distributed", // target key figure

 "costs", // source key figure

 "costs_key", // key

 "key_sum"); // sum

// view table

MatrixTable.View_MatrixTable(CombinedTbl1,

"Step 4: Combined table after distribution");

User-defined function DistributeSourceAmountToTarget as input to the table transformation

function above implements the formula for distributed costs:

public static void DistributeSourceAmountToTarget(

…

// Calculate distributed costs:

KeyFigDic[target_keyfig] =

KeyFigDic[source_keyfig] * KeyFigDic[key_keyfig] / KeyFigDic[sum_keyfig];

…

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 8

Simple Distribution Function
All the four steps for calculating the distributed amounts can be packed into a single general

distribution function with the following input and output parameters:

OutputTable =

SimpleDistribution(SourceTable, KeyTable, TargetKeyFig, KeySumKeyFig)

where:

 TargetKeyFig is the name of the resultant key figure with distributed amounts, like

costs_distributed

 KeySumKeyFig is the name of the aggregated key figure as sum of key values w.r.t. common

attributes, like key_sum

Following conditions must be satisfied for input parameters of the distribution function:

 Both SourceTable and KeyTable must have exactly one key figure (representing source and

key amounts respectively)

 SourceTable and KeyTable must have at least one common attribute (text or numeric)

 Both input tables must share the same MetaData object (i.e. common data universe)

 The key figures TargetKeyFig and KeySumKeyFig must be defined in MetaData

 Both input tables must not contain the key figures TargetKeyFig or KeySumKeyFig

The exact signature of the distribution function in C# is as follows:

public static MatrixTable SimpleDistribution(MatrixTable SourceTable,

MatrixTable KeyTable, string TargetKeyFig, string KeySumKeyFig)

Let’s test this function with the same input tables (cost and cost key) introduced in the first example

above (distribution in 4 steps):

MatrixTable CombinedTbl2 =

SimpleDistribution(SourceTable: CostTable, KeyTable: CostKeyTable,

 TargetKeyFig: "costs_distributed", KeySumKeyFig: "key_sum");

// view table

MatrixTable.View_MatrixTable(CombinedTbl2,

 "Result of SimpleDistributuion(): Output table with distributed

amounts");

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 9

So we obtained the same distribution results. That is, the four distribution steps explained in the

previous example are successfully packed into a function with generalized input and output

parameters. Now you can execute the distribution function on any pair of input tables (source and

key) provided that all the parameter conditions listed above are satisfied.

Note that the input tables can have any number of attributes, and they can also have multiple

common attributes. In the previous example we had one common attribute: department. In the next

example we have multiple common attributes, namely department and country. Source and key

amounts are specified with this attribute pair.

Distributing bonus amounts to teams and years
In this example scenario, a company with headquarters in Paraguay has sales and production

departments in countries Bolivia and Peru. The bonus amounts as performance incentives for

employees are first calculated per department and country. These bonus amounts are then

distributed to teams and years. Bonus amounts are distributed also to years, because the bonus

payments will be done at the end of 2013 and 2014.

Source table: Bonus amounts per department and country

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 10

KeyTable: Key amounts for the distribution

The simple distribution function will be tested again with these new input tables:

// Distribute

MatrixTable ResultTbl = SimpleDistribution(SourceTable: BonusTable,

KeyTable: BonusKeyTable,

 TargetKeyFig: "bonus_distributed", KeySumKeyFig: "key_sum");

// view table

MatrixTable.View_MatrixTable(ResultTbl,

 "Result of SimpleDistribution() with bonus and key tables as input:

Output table with distributed bonus amounts");

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 11

Note that the sum of key amounts (key_sum) are obtained by aggregating bonus_key with

respect to the attribute pair department and country, as common attributes of input tables.

Allocating profits to profit centers
This example will illustrate that allocations can be formulated as a special case of distribution.

In this example scenario, the profits accumulated at a main hub are distributed to other cost centers

according to the given distribution keys.

Source table: Accumulated profits

KeyTable: Key amounts for the allocation of profits to other cost centers

Just by separating the attribute profitcenter into two (source and target) we have transformed the

allocation into a distribution problem. We can now apply the distribution function on these source

and key tables:

// Distribute

ResultTbl = SimpleDistribution(SourceTable: ProfitTable, KeyTable:

ProfitKeyTable,

 TargetKeyFig: "profit_distributed", KeySumKeyFig: "key_sum");

// view table

MatrixTable.View_MatrixTable(ResultTbl,

 "Allocation results with profit and key tables as input: Output table

with distributed profits");

Conclusions
Simple proportionate distribution can be accomplished by simple table functions in four steps. All

these steps can be packed into a general distribution function with two input tables representing the

source (initial values to be distributed) and key (distribution ratios) amounts.

22. November 2012 ©Tunc A. Kütükcüoglu finaquant.com

Page 12

Once you have your distribution function, you can forget about the details of the function (four steps

etc.) and simply apply this function on any input table pairs specifying the source and key amounts,

provided that:

a. You have a simple proportionate (pro-rata) distribution case.

b. All the parameter conditions for the distribution function are satisfied.

There are indeed more complex conditional allocation and distribution cases that cannot be captured

by the simple distribution function. Such distribution functions will be offered with the commercial

version of finaquant® protos: finaquant® calcs.

Nevertheless, if you have sufficient analytical skills, you can calculate almost any kind of distribution

with the table functions of finaquant® protos. The key functions will be table combinations,

aggregations and transformations (especially row-by-row processing).

Allocations can be formulated as a distribution problem, as the last example above illustrates (profit

allocation).

	Getting and using the source code (C#)
	Allocations and Distributions
	Distribution in four steps: Distribution of costs
	Step 1: Combine cost and key tables
	Step 2: Add key figure “key_sum" into the combined table
	Step 3: Insert new key figure “costs_distributed” into combined table
	Step 4: Calculate distributed costs

	Simple Distribution Function
	Distributing bonus amounts to teams and years
	Allocating profits to profit centers
	Conclusions

		tuncalik@finaquant.com
	2012-11-22T23:27:49+0100
	Herrliberg/Switzerland
	Finaquant Analytics GmbH
	I am the author of this document

